Citation: Black JL, Macinko J. Neighborhoods and obesity. Nutr Rev. 2008 Jan;66(1):2-20. **PubMed ID:** 18254880 #### Study Design: Systemic Review #### Class: M - Click here for explanation of classification scheme. ## Research Design and Implementation Rating: POSITIVE: See Research Design and Implementation Criteria Checklist below. #### Research Purpose: This review summarizes the literature on neighborhood determinants of obesity. #### **Inclusion Criteria:** - Outcome variables including a measure of body weight, physical activity or diet Independent variables including a neighborhood-level measure or assessment of a social, behavioral, or demographic predictor of obesity - The study was conducted in a human population in an industrialized country. - Only English-language articles were reviewed. #### **Exclusion Criteria:** all others not meeting inclusion criteria. #### **Description of Study Protocol:** #### Search procedure The literature review was conducted from August 2005 through March 2007 by systemically searching the PubMed and PsychInfo databases. Both databases were searched with the following keywords in their title or abstract: "neighborhood AND obesity." The following combinations of keywords were searched in abstracts and titles: "obesity" AND "multilevel"; "SES"; "income"; "income inequality"; "race"; "supermarket"; "grocery store"; "fast food"; "farmers market"; "food policy"; "food price"; "restaurant"; "built environment"; "physical activity"; "crime"; and "transportation". The keyword "neighborhood" was also combined with "physical activity", "diet", "race", and "socioeconomic status". #### Type of intervention and outcomes investigated - · measure of body weight - · physical activity - or diet #### **Data Collection Summary:** ## Type of information abstracted from articles Results were grouped according to the major neighborhood characteristics analyzed in the literature. ### How was data combined: - Macro-level social, historical, and economic factors that shape overall neighborhood context - neighborhood or meso-level living conditions, such as infrastructure and services - local availability and quality of food - neighborhood characteristics that promote or inhibit physical activity #### **Description of Actual Data Sample:** # of articles included: 36 included a specific measure of body weight status or obesity # of articles identified: 2000 potential articles were identified; 90 of which assessed at least one neighborhood determinant of obesity Studies of neighborhood- and area-level socioeconomic resources and obesity | Reference | Country,
location
(population
sampled) | Sample | Study
design | Neighborhood
metric | Height and weight data | Body weight outcome(s) | |----------------------------------|--|--------------------------------|-----------------|---|------------------------|------------------------------------| | Chang (2006) | USA (MSAs
with >10%
black) | 46,881
(130
MSAs) | M | MSAs | Self-reported | Overweight=BMI≥25;
obese=BMI≥30 | | Chen &
Paterson
(2006) | USA, St
Louis, MO
(adolescents) | 315 | I | Census block
group | Measured | BMI | | Inagami et
al (2006) | USA, Los
Angeles
County, CA | 2620
(65
NHs) | M | Census tract | Self-reported | BMI | | Janssen et
al (2006) | Canada
(students in
grades 6-10) | 6684
(169
schools) | M | 5 km Radius
around school | Self-reported | Obese=BMI≥30 | | King et al (2006) | Australia,
Melbourne | 4913
(50
NHs) | M | Census
collector
district | Self-reported | BMI | | Mobley et al (2006) | US States:
CT, MA,
NE, NC, SD
(low-income
women) | 2692
(222
NHs) | M | Zip code | Measured | BMI | | Monden et
al (2006) | Netherlands,
Eindhoven | 8802
(86
NHs) | M | Administrative unit | Self-reported | Overweight=BMI≥25 | | Nelson et
al (2006) | USA
(students in
grades 7-12) | 20,745 | I | Constructed via cluster analysis | Self-reported | Overweight=BMI≥95th
percentile | | Spillsbury
et al (2006) | USA,
Cleveland
(African
American
children) | 843 | I | Census tract | Measured | BMI percentile for age | | Boardman
et al (2005) | USA | 402,154 | M | "Very small
areas" from
NHIS | Self-reported | Obese=BMI≥30 | | Vandergrift
& Yoked
(2004) | USA | 47 | Е | State | Self-reported | Obesity=% per state with BMI≥30 | | Robert and
Reither
(2004) | USA | 3617 | M | Census tract | Self-reported | BMI | | Van Lenthe et al (2002) | Netherlands,
Eindhoven | 8897
(86
NHs) | M | Census tract | Self-reported | Overweight=BMI≥25 | | Sundquist
et al (1999) | Sweden | 9240 | I | Small area
market | Self-reported | Overweight and obesity | | Davey
Smith et al
(1998) | Scotland,
Renfew and
Paisley | 6961
men
(7991
women) | I | Postcode
sector and
enumeration
district | Measured | BMI | | Ellaway et
al (1997) | Scotland,
Glasgow | 691
(4NHs) | I | Socially contrasting neighborhoods | Measured | Obese=BMI≥30 | Abbreviations: E, ecologic; I, individual; M, multilevel; MSAs metropolitan statistical area; NHs neighborhoods; NHIS, 1990-1994 National Health Interview Survey # Studies of income equality and obesity | Reference | Country,location
(population
sampled) | Sample size | | Main
measure(s) | Association with BMI/weight status | income | | Body weight outcome(s) | |-----------|---|-------------|--|--------------------|------------------------------------|--------|--|------------------------| |-----------|---|-------------|--|--------------------|------------------------------------|--------|--|------------------------| | Mobley et al (2006) | USA: CT, MA,
NE, NC, SD
(low income
women) | 2692;
88 NHs | M | Income
sipersion | Ø | County | Self-reported | BMI | |-------------------------------|---|---|---|---|---------------------|-----------------|--|--| | Picket et al (2005) | Large, high income countries | 21 | Е | Gini
coeeficients,
UNDPHP
indicators | + | Country | Pooled data
from the
International
Obesity
Taskforce | Proportion
obese
(BMI≥30)
per country | | Robert &
Reither
(2004) | USA | 3617 | M | Gini
coefficients | + | Census
tract | Self-reported | ВМІ | | Diez-Roux
et al (2000) | USA | 81,557
44
states | M | Robin Hood
Index | + for
women only | State | Self-reported | BMI | | Kahn et al (1998) | USA | 34,158
male;
42,741
female
21
states | I | Household
Inequality
Index | + for men
only | State | Self-reported | Self-reported
weight gain
in waist | Abbreviations: E, ecologic; I, Individual; M, multilevel; MSAs, metropolitan statistical areas; NHs, neighborhoods # Studies of neighborhood and racial composition and obesity | Reference | Country,
location
(population
sampled) | Sample size | Study | Measure(s)
of racial
composition | Association with BMI/weight status | Neighborhood
metric of SES
measure | Height and weight data | Body weight outcome(s) | |-------------------------------|---|------------------------|-------|--|------------------------------------|--|------------------------|---------------------------| | Chang (2006) | USA (MSAs
with >10%
black) | 46,881;
130
MSAs | M | Index of racial isolation | +for blacks;
Ø for whites | MSA | Self-reported | BMI;
overweight=BMI≥25 | | Mobley et al (2006) | USA States:
CT, MA,
NE, NC, SD
(low-income
women) | 2692;
88 NHs | M | Index or racial segregation | Ø | Zip code | Measured | ВМІ | | Boardman
et al
(2005) | USA | 402,154 | M | Proportion black | + | "Very small
areas" from
NHIS | Self-reported | Obese=BMI≥30 | | Robert &
Reither
(2004) | USA | 3617 | M | Percent
black | Ø | Census tract | Self-reported | ВМІ | Abbreviations: E, ecologic; I, Individual; M, multilevel; MSAs, metropolitan statistical areas; NHs, neighborhoods # Studies of neighborhood food availability and obesity | Reference | Country,
location
(population
sampled) | Sample | Study | Main
measure | Method of
measuring
food access | Association with BMI/weight status | Height and weight data | Body weight outcomes | |----------------------------|---|-----------------------|-------|---------------------------------|--|--|------------------------|------------------------------------| | Inagami
et al
(2006) | USA, Los
Angeles
County, CA | 2620;
65 NHs | M | Access to primary grocery store | Distance
between
residence and
census tract
centroid | + For father distances | Self-reported | ВМІ | | Morland
et al
(2006) | USA, states:
MS, NC,
MD,MN | 10,763;
207
NHs | М | Availability of food stores | Number of
food stores
per census
tract | For supermarkets; + for convenience stores | Measured | Overweight=BMI≥25;
obese=BMI≥30 | | Jeffery et al (2006) | USA, state:
MN | 1033 | I | Access to restaurants | Restaurant
outlet density
within 2 mile
radius of
work and
home | Ø for fats food; -for men with more restaurants near work | Self-reported | ВМІ | |---------------------------------------|--|--|---|-----------------------------------|---|---|--|----------------------------------| | Mobley et al (2006) | USA, states:
CT, MA,
NE, NC, SD
(low-income
women) | 2692;
222
NHs | М | Availability
of food
stores | Density of
grocery
stores, fast
food,
restaurants
and
mini-marts
per zip code | Ø | Measured | BMI | | Sturm
and Data
(2005) | USA,
(children >4
years old
followed
until 3rd
grade) | 6918;
724
schools;
59
MSAs;
37 states | M | Access to food stores | Distance
from home
and school
zip codes to
grocery
stores,
convenience
stores and
restaurants
and food
prices | Ø + for fruit and vegetable price index | Measured | ВМІ | | Maddock
(2004) | USA | 50 states | E | Availability of fast food | State-level
availability
(square miles
and
populationper
outlet) of
McDonalds
and Burger
King | + | State-level
aggregates
based on
self-reported
data | Percent obese (BMI≥30) per state | | Burdette
and
Whitaker
(2003) | USA,
Cincinnati,
OH
(3-4-year
old children
in WIC) | 7020 | Ĭ | Availability of fast food | Distance
from home to
fast-food
outlet | Ø | Measured | Overweight=BMI≥95th percentile | \emptyset , no significant association; +, positive association; -, negative association Abbreviations: E, ecologic; I, Individual; M, multilevel; MSAs, metropolitan statistical areas; NHs, neighborhoods # Studies of neighborhood physical activity environment and obesity | Reference | Country,
location
(subpopulation
studied) | Sample size | Study | Type of measure | Main
neighborhood
variable(s) | Metric of
neighborhood
measure | Association with BMI/weight status | Height and weight data | Body weight outcome | |----------------------|--|-------------|-------|-------------------------------|---|---|---|------------------------|---------------------| | Boehmer et al (2007) | USA,
Savannah, GA
and St. Louis,
MO | 1032 | I | Perceived
and
objective | Recreation
facilities, land
use,
transportation,
aesthetics | Perceived
objective 400
m buffers from
residence | +For perceived lack of destinations, sidewalks and objective poor sidewalk quality, physical disorder, garbage; Øfor recreation facilities, traffic safety | Self-reported | Obese=BMI≥30 | | Berke et al (2007) | USA, King
County, WA
(older adults
65-97 years) | 936 | I | Objective | Walkability score | 1-3 km buffers
from residence | Ø for
walkability | Measured | BMI | | Poortinga
(2006) | England | 14,836;
720
postcodes | М | Perceived | Self-rated local environment features (e.g. access to amenities, physical features, reputation, aesthetics, social support and capital) | Perceived
neighborhood | +for social
nuisances;
- for
perceptions
of the social
environment | Measured | Obese=BMI≥30 | |------------------------------------|---|---|---|---|---|---|---|--|---------------------------------------| | Mobley et al (2006) | USA; CT,
MA, NE, NC,
SD
(low-income
women) | 2692;
222 NHs | M | Objective | Land use,
fitness
facilities per
1000 residents,
robbery arrest
per 100,000 | Zip code | - for mised
land use,
fitness
facilities;
+ for crime | Measured | ВМІ | | Gordon-Larsen et al (2006) | USA (adolescents) | 20,745 | I | Objective | Access to physical activity facilities | Block group | - for increased facilities | Self-reported | Overweight=BMI≥95th percentile | | Nelson et al
(2006) | USA (students grade 7-12) | 20,745 | I | Objective | Access to
physical
activity
facilities,
walkability,
crime used to
define
neighborhood
clusters | 3-km distance from residence | + for rural
working
class and
exurban and
mixed-race
urban areas | Self-reported | Overweight=BMI≥95th percentile | | Lumeng et al (2006) | USA children
(7019 years) | 768; 10
NHs | I | Perceived | Parental
perceptions of
neighborhood
safety | Perceived
neighborhood | - for
perceived
safety | Self-reported | Overweight=BMI≥95th percentile | | Glass et al
(2006) | USA,
Baltimore,
MD (age50-70
years) | 1140; 65
NHs | M | Perceived | Neighborhood
psychosocial
hazard scale | Baltimore "city
neighborhoods" | + for
perceived
psychosocial
hazards | Self-reported | Obese=BMI≥30 | | Timperio et al (2005) | Australia,
Melbourne
(families with
children ages
5-6 and 10-12
years) | 291
families
of 5-6
and 919
families
of 10-12
year olds | I | Perceived
(by
parents
and
children) | Neighborhood
access to
physical
activity
facilities,
traffic and
safety | Perceived
neighborhood | + for
parental
perception
of traffic,
concern for
road safety
with
children
aged 10-12
years | Measured
(for children) | Obese=BMI≥30 | | Ellaway et al
(2005) | Europe | 6919; 8 countries | I | Perceived (by surveyors) | Graffiti, litter,
dog mess, and
greenery | Immediate
residential
environment | - for green
space; + for
graffiti,
garbage | Self-reported | Overweight/obese
=BMI≥25 | | Rutt and
Coleman
(2005) | USA, El Paso,
TX (mainly
Hispanic) | 996 | I | Perceived | Physical
environment
characteristics,
barriers to
exercise | 2.5 mile radius | + for land use mix | Self-reported | вмі | | Lopez-Zetina (2005) | USA, CA | 33 counties | Е | Objective | Aggregate
VNT per
county | County (with >100,000 residents) | + for county
VMT | Self-reported | County-level % obese (BMI≥30) | | Vanderfrift
and Yoked
(2004) | USA | 50 states | E | Objective | Urban sprawl | State level | + for
amount of
developed
land | Self-reported
from
secondary
data | State-level percent
obese (BMI≥30) | | Frank et al (2004) | USA, Atlanta,
GA | 10,878 | I | Objective | Land use mix | 1-kb distance
from residence | - for mixed land use | Self-reported | Obese=BMI≥30 | | Saelens et al (2003) USA, San Francisco, CA 107 | I P | Perceived | Neighborhood
environment
walkability
scale | Perceived
neighborhood | - for
walkability | Self-reported | Overweight=BMI≥25 | |---|-----|-----------|---|---------------------------|----------------------|---------------|-------------------| |---|-----|-----------|---|---------------------------|----------------------|---------------|-------------------| Abbreviations: E, ecologic; I, Individual; M, multilevel; MSAs, metropolitan statistical areas; NHs, neighborhoods; VMT, vehicle miles traveled #### Summary of Results: ## **Key Findings** - From 37 studies, the influence of neighborhood factors on obesity are mixed. - Neighborhood-level measures of economic resources were associated with obesity in 15 studies - The associations between neighborhood income inequality and racial composition with obesity were mixed. The availability of healthy versus unhealthy food was inconsistently related to obesity. - Neighborhood features that discourage physical activity were consistently associated with increased body mass index. #### Other Findings • This review suggests that, at minimum, individual-level approaches such as diet and exercise guidelines need to recognize potential barriers to good health imparted by the neighborhood context. #### **Author Conclusion:** Characterisites of the built environment and neighborhood opportunities for physical activity are consistently associated with reduced body weight status, while the influence of food avialability on obesity is mixed. The efficacy of targeted neighborhood interventions to reduce obesity remains unknown. #### **Reviewer Comments:** **Relevance Questions** ## Research Design and Implementation Criteria Checklist: Review Articles | 1. | Will the answer if true, have a direct bearing on the health of patients? | Yes | |------------|--|-----| | 2. | Is the outcome or topic something that patients/clients/population groups would care about? | Yes | | 3. | Is the problem addressed in the review one that is relevant to nutrition or dietetics practice? | Yes | | 4. | Will the information, if true, require a change in practice? | Yes | | alidity Qu | estions | | | 1. | Was the question for the review clearly focused and appropriate? | Yes | | 2. | Was the search strategy used to locate relevant studies comprehensive? Were the databases searched and the search termsused described? | Yes | | 3. | Were explicit methods used to select studies to include in the review? Were inclusion/exclusion criteria specified and appropriate? Were selection methods unbiased? | Yes | | 4. | Was there an appraisal of the quality and validity of studies included in the review? Were appraisal methods specified, appropriate, and reproducible? | Yes | | 5. | Were specific treatments/interventions/exposures described? Were treatments similar enough to be combined? | Yes | | 6. | Was the outcome of interest clearly indicated? Were other potential harms and benefits considered? | Yes | | 7. | Were processes for data abstraction, synthesis, and analysis described? Were they applied consistently across studies and groups? Was there appropriate use of qualitative and/or quantitative synthesis? Was variation in findings among studies analyzed? Were heterogeneity issued considered? If data from studies were aggregated for meta-analysis, was the procedure described? | Yes | | 8. | Are the results clearly presented in narrative and/or quantitative terms? If summary statistics are used, are levels of significance and/or confidence intervals included? | Yes | Are conclusions supported by results with biases and limitations taken into consideration? Are limitations of the review Copyright American Dietetic Association (ADA). 9. 10. Was bias due to the review's funding or sponsorship unlikely? identified and discussed?